21,223 research outputs found

    On the equivalence of Lambda(t) and gravitationally induced particle production cosmologies

    Get PDF
    The correspondence between cosmological models powered by a decaying vacuum energy density and gravitationally induced particle production is investigated. Although being physically different in the physics behind them we show that both classes of cosmologies under certain conditions can exhibit the same dynamic and thermodynamic behavior. Our method is applied to obtain three specific models that may be described either as Lambda(t)CDM or gravitationally induced particle creation cosmologies. In the point of view of particle production models, the later class of cosmologies can be interpreted as a kind of one-component unification of the dark sector. By using current type Ia supernovae data, recent estimates of the cosmic microwave background shift parameter and baryon acoustic oscillations measurements we also perform a statistical analysis to test the observational viability within the two equivalent classes of models and we obtain the best-fit of the free parameters. By adopting the Akaike information criterion we also determine the rank of the models considered here. Finally, the particle production cosmologies (and the associated decaying Lambda(t)-models) are modeled in the framework of field theory by a phenomenological scalar field model.Comment: 9 pages, 3 figures, new comments and 8 references added. Accepted for publication in Physics Letters

    Accessing the Acceleration of the Universe with Sunyaev-Zel'dovich and X-ray Data from Galaxy Clusters

    Full text link
    By using exclusively the Sunyaev-Zel'dovich effect and X-ray surface brightness data from 25 galaxy clusters in the redshift range 0.023< z < 0.784 we access cosmic acceleration employing a kinematic description. Such result is fully independent on the validity of any metric gravity theory, the possible matter-energy contents filling the Universe, as well as on the SNe Ia Hubble diagram.Comment: 3 pages, 4 figures, To appear in the Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativit

    Are Galaxy Clusters Suggesting an Accelerating Universe?

    Full text link
    The present cosmic accelerating stage is discussed through a new kinematic method based on the Sunyaev- Zel'dovich effect (SZE) and X-ray surface brightness data from galaxy clusters. By using the SZE/X-ray data from 38 galaxy clusters in the redshift range 0.14z0.890.14 \leq z \leq 0.89 [Bonamente et al., Astrop. J. {\bf 647}, 25 (2006)] it is found that the present Universe is accelerating and that the transition from an earlier decelerating to a late time accelerating regime is relatively recent. The ability of the ongoing Planck satellite mission to obtain tighter constraints on the expansion history through SZE/X-ray angular diameters is also discussed. Our results are fully independent on the validity of any metric gravity theory, the possible matter- energy contents filling the Universe, as well as on the SNe Ia Hubble diagram from which the presenting accelerating stage was inferred.Comment: 6 pages, 6 figures, AIP Conf. Proc. Invisible Universe: Proceedings of the Conferenc

    Motion of falling object

    Full text link
    A simple setup was assembled to study the motion of an object while it falls. The setup was used to determine the instantaneous velocity, terminal velocity and acceleration due to gravity. Also, since the whole project was done within $20 it can easily be popularized.Comment: 11 pages, 4 figur

    Non-nequilibrium model on Apollonian networks

    Full text link
    We investigate the Majority-Vote Model with two states (1,+1-1,+1) and a noise qq on Apollonian networks. The main result found here is the presence of the phase transition as a function of the noise parameter qq. We also studies de effect of redirecting a fraction pp of the links of the network. By means of Monte Carlo simulations, we obtained the exponent ratio γ/ν\gamma/\nu, β/ν\beta/\nu, and 1/ν1/\nu for several values of rewiring probability pp. The critical noise was determined qcq_{c} and UU^{*} also was calculated. The effective dimensionality of the system was observed to be independent on pp, and the value Deff1.0D_{eff} \approx1.0 is observed for these networks. Previous results on the Ising model in Apollonian Networks have reported no presence of a phase transition. Therefore, the results present here demonstrate that the Majority-Vote Model belongs to a different universality class as the equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure

    Formation of Dark Matter Haloes in a Homogeneous Dark Energy Universe

    Full text link
    Several independent cosmological tests have shown evidences that the energy density of the Universe is dominated by a dark energy component, which cause the present accelerated expansion. The large scale structure formation can be used to probe dark energy models, and the mass function of dark matter haloes is one of the best statistical tools to perform this study. We present here a statistical analysis of mass functions of galaxies under a homogeneous dark energy model, proposed in the work of Percival (2005), using an observational flux-limited X-ray cluster survey, and CMB data from WMAP. We compare, in our analysis, the standard Press-Schechter (PS) approach (where a Gaussian distribution is used to describe the primordial density fluctuation field of the mass function), and the PL (Power Law) mass function (where we apply a nonextensive q-statistical distribution to the primordial density field). We conclude that the PS mass function cannot explain at the same time the X-ray and the CMB data (even at 99% confidence level), and the PS best fit dark energy equation of state parameter is ω=0.58\omega=-0.58, which is distant from the cosmological constant case. The PL mass function provides better fits to the HIFLUGCS X-ray galaxy data and the CMB data; we also note that the ω\omega parameter is very sensible to modifications in the PL free parameter, qq, suggesting that the PL mass function could be a powerful tool to constrain dark energy models.Comment: 4 pages, 2 figures, Latex. Accepted for publication in the International Journal of Modern Physics D (IJMPD)

    Disorder effects at low temperatures in La_{0.7-x}Y_{x}Ca_{0.3}MnO_{3} manganites

    Full text link
    With the aim of probing the effect of magnetic disorder in the low-temperature excitations of manganites, specific-heat measurements were performed in zero field, and in magnetic fields up to 9 T in polycrystalline samples of La_{0.7-x}Y_{x}Ca_{0.3}MnO_{3}, with Y concentrations x=0, 0.10, and 0.15. Yttrium doping yielded the appearance of a cluster-glass state, giving rise to unusual low-temperature behavior of the specific-heat. The main feature observed in the results is a strong enhancement of the specific-heat linear term, which is interpreted as a direct consequence of magnetic disorder. The analysis was further corroborated by resistivity measurements in the same compounds.Comment: 9 pages, 2 figure

    Probing the two-scale-factor universality hypothesis by exact rotation symmetry-breaking mechanism

    Full text link
    We probe the two-scale factor universality hypothesis by evaluating, firstly explicitly and analytically at the one-loop order, the loop quantum corrections to the amplitude ratios for O(NN) λϕ4\lambda\phi^{4} scalar field theories with rotation symmetry-breaking in three distinct and independent methods in which the rotation symmetry-breaking mechanism is treated exactly. We show that the rotation symmetry-breaking amplitude ratios turn out to be identical in the three methods and equal to their respective rotation symmetry-breaking ones, although the amplitudes themselves, in general, depend on the method employed and on the rotation symmetry-breaking parameter. At the end, we show that all these results can be generalized, through an inductive process based on a general theorem emerging from the exact calculation, to any loop level and physically interpreted based on symmetry ideas.Comment: 17 pages, 3 figure
    corecore